A Bayesian Adaptive Allocation Method for Clinical Trials with Dual Objectives

Roy T. Sabo¹, Cathy Roberts², Amir A. Toor² and John M. McCarty²

¹ Department of Biostatistics ² Bone Marrow Transplant Division Virginia Commonwealth University

Monday, November 5, 2012

Introduction

Adaptive Allocation for Dual-Outcomes Simulation Study Data Example Discussion

Motivation: Hematopoietic Stem Cell Transplantation Adaptive Allocation

1. Introduction

- Motivation: Hematopoietic Stem Cell Transplantation
- Adaptive Allocation
- 2. Adaptive Allocation for Dual-Outcomes
 - General Idea
 - Weighting Algorithm in Specific Cases
- 3. Simulation Study
 - ► 2-Arm Trials
 - ► 3-Arm Trials
 - Dependent Objectives
- 4. Data Example
- 5. Discussion
 - Summary
 - Concurrent Research

Motivation: Hematopoietic Stem Cell Transplantation Adaptive Allocation

- Retrospective cost-effectiveness study:
 - Bone-marrow transplant patients treated at VCU Medical Center (2003-2010).
 - Diagnosed with Hodgkin's disease, multiple myeloma or non-Hodgkin's lymphoma.
 - Peripheral blood stem cell mobilization with one of four treatments: two standard therapies and two experimental therapies.
- ► Two primary outcomes:
 - 1. Treatment efficacy: $\geq 5 \times 10^6$ CD34+ stem cells collected per kg bodyweight.
 - 2. Treatment futility: \geq 5 days needed for stem cell collection.
- ► A prospective Phase II clinical trial was planned from this study.
 - 1. Could we use adaptive allocation?
 - 2. Could we account for both objectives (efficacy and futility)?

Motivation: Hematopoietic Stem Cell Transplantation Adaptive Allocation

► Standard practice in clinical trials: fixed-ratio randomization.

- ► Balanced design (e.g. 1 : 1 or 1 : 1 : 1 ratio).
- ► Unbalanced design (e.g. 2 : 1 or 2 : 2 : 1).
- Can needlessly expose patients to ineffective or harmful treatments.
- Adaptive Allocation or Adaptive Randomization:
 - ► Allocation proportions can change throughout trial.
 - Patients more likely to receive more efficacious treatments (Berry, 2001 2004).
 - Minimize patients receiving ineffective, inferior or toxic treatments (Berry 2001).
 - ▶ "Bandit" methods: Thompson (1933), Bather (1981).
 - "Pick-the-winner" or "play-the-winner" methods: Robbins (1952), Chang (2008).

- ► What about 'Dual' primary outcomes?
 - Previous methods don't *directly* apply.
- ► Assume outcomes are dichotomous (e.g. success or failure).
 - Outcomes need not be immediately observable, provided such delays are small (Zelen 1969).
 - Extreme cases may delay changes in weights (Berry and Eick 1995).
- ► Fix total sample size at *n* and treatment groups at *k*.
 - $\theta_j, j = 1, \dots, k$, represent first outcome.
 - $\lambda_j, j = 1, \dots, k$, represent second outcome.
 - Dichotomous observations: these are generally proportions.
- Three ways to compare treatments:
 - Inter-treatment comparisons.
 - Hypothesized or historical efficacy / toxicity rates.
 - Hybrid approach.

General Idea Weighting Algorithm in Specific Cases

• Compare "success" rates for both outcomes between treatments:

•
$$P_{j\ell}^1 = P(\theta_j > \theta_\ell)$$
 for the first outcome.

• $P_{j\ell}^2 = P(\lambda_j > \lambda_\ell)$ for the second outcome.

$$w_{j} = \frac{\left(\Pi_{\ell=1}^{k} P_{j\ell}^{1} P_{j\ell}^{2}\right)^{c(n)}}{\sum_{i=1}^{k} \left(\Pi_{\ell=1}^{k} P_{i\ell}^{1} P_{i\ell}^{2}\right)^{c(n)}}$$

- Compare "success" rates to hypothesized values $(p_o^1 \text{ and } p_o^2)$.
 - $P_j^1 = P(\theta_j > p_o^1)$ for the first outcome.
 - $P_j^2 = P(\lambda_j > p_o^2)$ for the second outcome.

$$w_{j} = \frac{\left(P_{j}^{1}P_{j}^{2}\right)^{c(n)}}{\sum_{i=1}^{k} \left(P_{i}^{1}P_{i}^{2}\right)^{c(n)}}$$

 Hybrid approach: compare one outcome between treatments, the other to hypothesized value.

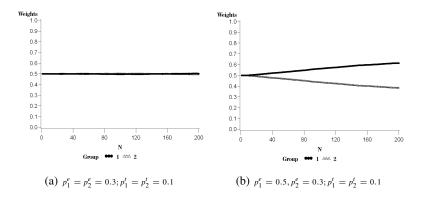
$$w_{j} = \frac{\left(P_{j}^{2}\Pi_{\ell=1}^{k}P_{j\ell}^{1}\right)^{c(n)}}{\sum_{i=1}^{k}\left[P_{i}^{2}\left(\Pi_{\ell=1}^{k}P_{i\ell}^{1}\right)\right]^{c(n)}}$$

2-Arm Trials 3-Arm Trials Dependent Objectives

- Each special case is repeated r = 1,000 times.
 - Trials consist of n = 200 simulated subjects.
 - Lead-in of first 10 subjects.
 - Thereafter, weights are allowed to adapt.
- Calculation of posterior probabilities (for simplicity):
 - Informative and skeptical *beta* priors on efficacy/toxicity rates.
 - Binomial likelihood for efficacy/toxicity frequencies.
 - Conjugate pair yields *beta* posteriors.
- ► These choices allow.
 - Comparisons to hypothesized values: probabilities obtained directly.
 - Inter-treatment comparisons: MCMC (or integration) methods used.

2-Arm Trials 3-Arm Trials Dependent Objectives

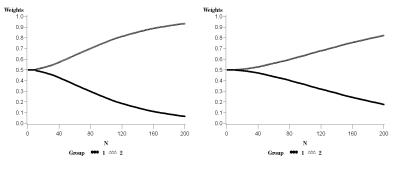
- Efficacy compared to hypothesized value (30%).
- ► Toxicity compared to hypothesized value (10%).



2-Arm Trials 3-Arm Trials Dependent Objectives

Simulation Results from 2-Arm Study.

- Efficacy compared to hypothesized value (30%).
- ► Toxicity compared to hypothesized value (10%).



(c) $p_1^e = p_2^e = 0.3; p_1^t = 0.25, p_2^t = 0.1$

(d) $p_1^e = 0.5, p_2^e = 0.3; p_1^t = 0.2, p_2^t = 0.1$

2-Arm Trials 3-Arm Trials Dependent Objectives

- ► Average Sample Size.
- Comparisons made to Hypothesized Values ($p_o^e = 0.3, p_o^t = 0.1$).

	Sample	Standard		Sample	Standard
Parameters	Size	Deviation	Parameters	Size	Deviation
$p_1^e = 0.3$			$p_1^e = 0.3$		
$p_2^e = 0.3$	$\hat{n}_1 = 101.0$	SD = 22.6	$p_2^e = 0.3$	$\hat{n}_1 = 52.2$	SD = 16.9
$p_1^t = 0.1$	$\hat{n}_2 = 99.0$	SD = 22.6	$p_1^t = 0.25$	$\hat{n}_2 = 147.8$	SD = 16.9
$p_2^t = 0.1$			$p_2^t = 0.1$		
$p_1^e = 0.5$			$p_1^e = 0.5$		
$p_2^e = 0.3$	$\hat{n}_1 = 111.6$	SD = 19.9	$p_2^e = 0.3$	$\hat{n}_1 = 71.2$	SD = 21.4
$p_1^t = 0.1$	$\hat{n}_2 = 88.4$	SD = 19.9	$p_{1}^{t} = 0.2$	$\hat{n}_2 = 128.8$	SD = 21.4
$p_2^t = 0.1$			$p_{2}^{t} = 0.1$		

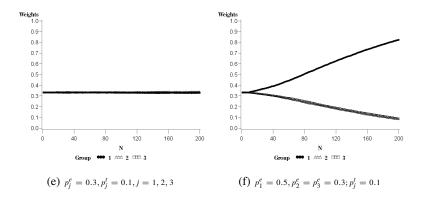
2-Arm Trials 3-Arm Trials Dependent Objectives

- Percentage of Larger Samples and Decisions in Favor.
- Comparisons made to Hypothesized Values ($p_o^e = 0.3, p_o^t = 0.1$).
- Case 1: $p_1^e = p_2^e = 0.3, p_1^t = p_2^t = 0.1.$
- Case 2: $p_1^e = 0.5, p_2^e = 0.3, p_1^t = p_2^t = 0.1.$
- Case 3: $p_1^e = p_2^e = 0.3$, $p_1^t = 0.25$, $p_2^t = 0.1$.
- Case 4: $p_1^e = 0.5, p_2^e = 0.3, p_1^t = 0.2, p_2^t = 0.1.$

	Reject in Favor of				% of Samples	
	Arm 1 Eff.	Arm 2 Eff.	Arm 1 Tox.	Arm 2 Tox.	$n_1 > n_2$	$n_2 > n_2$
Case 1 (Adapt)	3.3%	3.4%	2.7%	2.4%	50.6%	49.4%
Case 1 (Equal)	3.3%	2.1%	2.6%	2.5%	-	-
Case 2 (Adapt)	83.1%	0.0%	3.4%	3.7%	72.9%	27.1%
Case 2 (Equal)	83.6%	0.0%	2.2%	2.4%	-	-
Case 3 (Adapt)	2.5%	1.9%	80.5%	0.0%	1.3%	98.7%
Case 3 (Equal)	2.0%	2.7%	81.2%	0.0%	-	-
Case 4 (Adapt)	77.0%	0.0%	54.1%	0.1%	8.9%	91.1%
Case 4 (Equal)	81.4%	0.0%	51.4%	0.0%	_	-

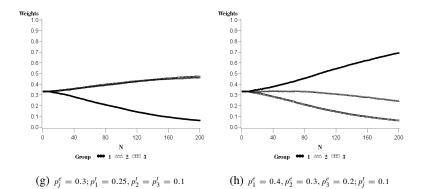
2-Arm Trials 3-Arm Trials Dependent Objectives

- Efficacy compared between treatments.
- ► Toxicity compared to hypothesized value (10%).



2-Arm Trials 3-Arm Trials Dependent Objectives

- Efficacy compared between treatments.
- ► Toxicity compared to hypothesized value (10%).



2-Arm Trials 3-Arm Trials Dependent Objectives

- ► Average Sample Size.
- ► Efficacy Compared between Treatments.
- Toxicity compared to hypothesized values $(p_o^t = 0.1)$.

	Sample		Sample
Parameters	Size	Parameters	Size
$p_1^e = 0.3 p_2^b = 0.3 p_3^r = 0.3 p_1^r = 0.1 p_2^r = 0.1 p_3^r = 0.1$	$\hat{n}_1 = 66.0, SD = 23.1$ $\hat{n}_2 = 66.2, SD = 23.0$ $\hat{n}_3 = 67.8, SD = 22.5$	$p_1^e = 0.3 p_2^e = 0.3 p_3^e = 0.3 p_1^r = 0.25 p_2^r = 0.1 p_3^r = 0.1$	$\hat{n}_1 = 37.2, SD = 14.7$ $\hat{n}_2 = 81.2, SD = 25.7$ $\hat{n}_3 = 81.6, SD = 26.4$
$p_1^e = 0.5 p_2^e = 0.3 p_3^r = 0.3 p_1^r = 0.1 p_2^r = 0.1 p_3^r = 0.1 $	$\hat{n}_1 = 113.0, SD = 21.9$ $\hat{n}_2 = 42.9, SD = 17.1$ $\hat{n}_3 = 44.1, SD = 17.3$	$p_1^e = 0.4 p_2^b = 0.3 p_3^2 = 0.2 p_1^1 = 0.1 p_2^1 = 0.1 p_3^2 = 0.1 $	$\hat{n}_1 = 101.0, SD = 23.4$ $\hat{n}_2 = 61.0, SD = 21.8$ $\hat{n}_3 = 38.0, SD = 15.0$

2-Arm Trials 3-Arm Trials Dependent Objectives

- Percentage of Larger Samples and Decisions in Favor.
- ► Efficacy Compared between Treatments.
- Toxicity compared to hypothesized values $(p_o^t = 0.1)$.

Case 1:
$$p_j^e = 0.3$$
, $p_j^t = 0.1$, $j = 1, 2, 3$. Case 2: $p_1^e = 0.5$, $p_2^e = p_3^e = 0.3$, $p_j^t = 0.1$, $j = 1, 2, 3$.

Case 3:
$$p_j^e = 0.3, j = 1, 2, 3, p_1^t = 0.25, p_2^t = p_3^t = 0.1$$
. Case 4: $p_1^e = 0.4, p_2^e = 0.3, p_3^e = 0.2, p_j^t = 0.1$.

Treatment	Reject in Favor of		% of	Reject in	Favor of	% of	
Comparison	(Adapt)	(Equal)	Samples	(Adapt)	(Equal)	Samples	
		Case 1		Case 3			
Eff: 1v2	6.8%	4.7%	$n_1 > n_2, n_3$	8.9%	5.1%	$n_1 > n_2, n_3$	
Eff: 1v3	6.1%	5.1%	31.2%	9.3%	4.5%	1.5%	
Eff: 2v3	6.6%	5.4%	$n_2 > n_1, n_3$	5.3%	6.3%	$n_2 > n_1, n_3$	
Tox: 1v2	7.1%	4.4%	33.9%	75.3%	78.0%	48.7%	
Tox: 1v3	7.2%	5.4%	$n_3 > n_1, n_2$	75.2%	74.3%	$n_3 > n_1, n_2$	
Tox: 2v3	7.3%	6.4%	33.8%	4.9%	4.8%	48.8%	
		Case 2			Case 4		
Eff 1v2	77.3%	77.8%	$n_1 > n_2, n_3$	32.7%	32.4%	$n_1 > n_2, n_3$	
Eff 1v3	75.4%	78.2%	93.2%	74.7%	82.0%	79.7%	
Eff 2v3	11.6%	6.3%	$n_2 > n_1, n_3$	36.7%	40.2%	$n_2 > n_1, n_3$	
Tox: 1v2	4.3%	5.8%	3.2%	6.0%	6.2%	17.7%	
Tox: 1v3	4.4%	6.2%	$n_3 > n_1, n_2$	7.5%	6.7%	$n_3 > n_1, n_2$	
Tox: 2v3	11.6%	5.6%	3.3%	12.0%	5.1%	1.9%	

2-Arm Trials 3-Arm Trials Dependent Objectives

- ► This method assumes objectives are Independent.
- ► What if dual objectives are Dependent?
 - Motivating Example: Futility is conditional on Efficacy.
 - ► Is adaptive allocation method affected?
- Simulation Study:
 - Assume $p_1^e = 0.5$ and $p_1^t = 0.1$ in treatment 1, and $p_2^e = 0.3$ and $p_2^t = 0.1$ in treatment 2.
 - Comparisons made to Hypothesized Values for Efficacy $(p_o^e = 0.3)$ and Toxicity $(p_o^t = 0.1)$.
 - ► Frechet bounds (Chaganty and Joe, 2006): use correlations -0.2, 0.0, 0.2 or 0.4.
- As correlation moves away from 0:
 - Slight move toward equal allocation.
 - SDs of weights decrease slightly.
 - Power relatively unaffected.

2-Arm Trials 3-Arm Trials Dependent Objectives

- Average Sample Size (with Standard Deviation) and Decisions in Favor.
- Comparisons made to Hypothesized Values for Efficacy and Toxicity.

	Sample		Reject in	Favor of	Sample		Reject in Favor of	
	Size	SD	Efficacy	Toxicity	Size	SD	Efficacy	Toxicity
$\rho = -0.2$				ho=0.0				
Arm 1	110.5	19.3	83.0%	3.2%	111.6	19.8	83.6%	3.3%
Arm 2	89.5	19.3	0.0%	3.0%	88.4	19.8	0.0%	3.9%
ho=0.2			ho = 0.4					
Arm 1	111.0	19.4	82.5%	4.2%	107.9	18.7	81.1%	5.5%
Arm 2	89.0	19.4	0.0%	3.4%	92.1	18.7	0.0%	2.4%

- Retrospective analysis of stem cell transplant patients treated at VCU Medical Center (2003 – 2010).
 - Mobilization groups: Plerixafor (AMD), Plerixafor early intervention (PEI), chemotherapy (Chemo) and granulocyte-colony stimulating factor (GCSF).

Outcome Definitions:

- Efficacy: patients produce $\geq 5 \times 10^6 / kg$ total CD34+ cells.
- Futility: \geq 5 days are needed for mobilization.

• Efficacy and futility measurements available in 373 patients:

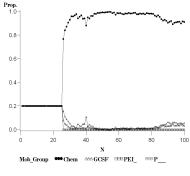
- AMD: $n = 19, \hat{p}_e = 0.53, \hat{p}_f = 0.05$
- PEI: n = 36, $\hat{p}_e = 0.47$, $\hat{p}_f = 0.11$
- Chemo: $n = 96, \hat{p}_e = 0.78, \hat{p}_f = 0.10$
- GCSF: $n = 222, \hat{p}_e = 0.64, \hat{p}_f = 0.33$

▶ Patient data used as if it were prospectively planned clinical trial.

- Patients accrued in chronological order.
- Patient outcomes available in order of mobilization (takes only a few days).

Patterns of adaptive weights for four treatment groups.

- Efficacy compared between treatments.
- ► Futility compared to hypothesized value (10%).



(i) 4-Group Study

Summary Concurrent Research

- Adaptive Randomization/Allocation:
 - Can allocate more patients to superior treatment...
 - ... and fewer to inferior treatment.
- ► Specifically, Bayesian Adaptive Randomization:
 - Relatively simple to implement.
 - Can be designed to have optimal *frequentist* characteristics (e.g. desirable type I and type II error rates).
 - ► Relatively unaffected by dependent outcomes.
- ► Note: not all randomized trials should use adaptive allocation.
 - Outcomes not quickly observed (Simon 1977; Berry and Eick 1995).
 - Controlling for covariates can be problematic (Simon 1977).
 - Multi-center trials (Berry and Eick 1995).

- ► We used c(n) = n/2N in our allocation algorithm (Thall and Wathen, 2007).
 - c(n) = 0 at beginning of trial: balanced allocation.
 - ► $c(n) \rightarrow 1/2$ toward end of trial (Optimal Allocation (Rosenberger *et al.*, 2001)).
 - Automatic "lead-in" at beginning of trial.
 - ► Keeps allocation weights from changing too quickly.
- We also considered a *decreasingly informative prior* (DIP) method.
 - ► *Skeptical* prior: *decreasing* function of sample size $\pi(\theta_0, N n)$.
 - Early trial: close to balanced allocation.
 - ► As trial progresses: actual evidence outweighs prior skepticism.
- DIP method Behaves similarly to Thall and Wathen (2007) method.
 - Performance can be affected by poor choice of skepticism.

Summary Concurrent Research

- ► We used posterior probabilities in our allocation algorithm (Thompson, 1933; Thall and Wathen, 2007).
 - ► Increases likelihood patients allocated to superior treatment.
 - ► Benefits (Berry, 2010) and shortcomings (Korn and Freidlin, 2011).
- We could have used predictive probabilities.
 - Account for uncertainty due to unobserved data.
 - Slower adaptation in early portions of trial.
 - Has better power and error rates than posterior probabilities.
 - Allocates slightly fewer patients into superior treatments.

Summary Concurrent Research

Acknowledgements

- Contributors: Department of Biostatistics, VCU.
 - Ghalib Bello: Graduate Student
 - Lauren Grant: Graduate Student
- Contributors: Bone Marrow Transplant Division, Massey Cancer Center, VCU Medical Center.
 - ► John M. McCarty, M.D.: Principal Investiagor
 - Amir A. Toor, M.D.: Co-Investigator
 - Cathy Roberts, Ph.D.: Project Coordinator
- This work was supported in part by:
 - ► Grant MCC-12889 through the Genzyme Corporation
 - Biostatistics Shared Resource of the VCU Massey Cancer Center, funded from NIH-NCI Cancer Center Support Grant P30 CA016059.

Summary Concurrent Research

References

- Berry, D.A. (2001). Adaptive trials and Bayesian statistics in drug development (with discussion). *Biopharmaceutical Report* 9(2): 1–11.
- Berry, D.A. (2004). Bayesian statistics and the efficiency and ethics of clinical trials. *Statistical Science* 19(1): 175–187.
- Thompson, W.R. (1933). On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. *Biometrika* 25(3-4): 285–294.
- Bather, J.A. (1981). Randomized allocation of treatments in sequential medical trials. *Journal of the Royal Statistical Society, Series B* 43(3): 265–292.
- Robbins, H. (1952). Some aspects of the sequential design of experiments. Bulletin of the American Mathematical Society 58(5): 527–535.
- Chang, M. (2008). Adaptive design theory and implementation using SAS and R. Chapman & Hall/CRC, New York.
- Zelen, M. (1969). Play the winner rule and the controlled clinical trial. *Journal of the American Statistician* 64: 131–146.

Summary Concurrent Research

References

- Chaganty, N.R., Joe, H. (2006). Range of correlation matrices for dependent Bernoulli random variables. *Biometrika* 93(1): 197–206.
- Berry, D.A., Eick, S.G. (1995). Adaptive assignment versus balanced randomization in clinical trials: a decision analysis. *Statistics in Medicine* 14: 231–246.
- Berry, D.A. (2006). Bayesian clinical trials. Nature 5: 27–36.
- Simon, R. (1977). Adaptive treatment assignment methods and clinical trials. Biometrics 33: 743–749.
- Thall, P.F., Wathen, J.K. (2007). Practical Bayesian adaptive randomization in clinical trials. European Journal of Cancer 43(5): 859–866.
- Rosenberger, W.F., Stallard, N., Ivanova, A., Harper, C.N., Ricks, M.L. (2001). Optimal adaptive designs for binary response trials. *Biometrics* 57: 909–913.
- Berry, D.A. (2010). Adaptive clinical trials: the promise and the caution. Journal of Clinical Oncology 29(6): 606-609.
- Korn, E.L., Freidlin, B. (2011). Outcome-adaptive randomization: is it useful? *Journal of Clinical Oncology* 29: 771-776.

Summary Concurrent Research

Thank You

Questions?