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Motivation: Hematopoietic Stem Cell Transplantation
Adaptive Allocation

I Retrospective cost-effectiveness study:
I Bone-marrow transplant patients treated at VCU Medical Center

(2003-2010).
I Diagnosed with Hodgkin’s disease, multiple myeloma or

non-Hodgkin’s lymphoma.
I Peripheral blood stem cell mobilization with one of four

treatments: two standard therapies and two experimental
therapies.

I Two primary outcomes:
1. Treatment efficacy: ≥ 5× 106 CD34+ stem cells collected per kg

bodyweight.
2. Treatment futility: ≥ 5 days needed for stem cell collection.

I A prospective Phase II clinical trial was planned from this study.
1. Could we use adaptive allocation?
2. Could we account for both objectives (efficacy and futility)?
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Motivation: Hematopoietic Stem Cell Transplantation
Adaptive Allocation

I Standard practice in clinical trials: fixed-ratio randomization.
I Balanced design (e.g. 1 : 1 or 1 : 1 : 1 ratio).
I Unbalanced design (e.g. 2 : 1 or 2 : 2 : 1).
I Can needlessly expose patients to ineffective or harmful

treatments.
I Adaptive Allocation or Adaptive Randomization:

I Allocation proportions can change throughout trial.
I Patients more likely to receive more efficacious treatments (Berry,

2001 2004).
I Minimize patients receiving ineffective, inferior or toxic

treatments (Berry 2001).
I “Bandit” methods: Thompson (1933), Bather (1981).
I “Pick-the-winner” or “play-the-winner” methods: Robbins

(1952), Chang (2008).
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General Idea
Weighting Algorithm in Specific Cases

I What about ‘Dual’ primary outcomes?
I Previous methods don’t directly apply.

I Assume outcomes are dichotomous (e.g. success or failure).
I Outcomes need not be immediately observable, provided such

delays are small (Zelen 1969).
I Extreme cases may delay changes in weights (Berry and Eick

1995).
I Fix total sample size at n and treatment groups at k.

I θj, j = 1, . . . , k, represent first outcome.
I λj, j = 1, . . . , k, represent second outcome.
I Dichotomous observations: these are generally proportions.

I Three ways to compare treatments:
I Inter-treatment comparisons.
I Hypothesized or historical efficacy / toxicity rates.
I Hybrid approach.
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I Compare “success” rates for both outcomes between treatments:
I P1

j` = P(θj > θ`) for the first outcome.

I P2
j` = P(λj > λ`) for the second outcome.

wj =

(
Πk

`=1P1
j`P2

j`

)c(n)

∑k
i=1

(
Πk

`=1P1
i`P2

i`

)c(n)

I Compare “success” rates to hypothesized values (p1
o and p2

o).
I P1

j = P(θj > p1
o) for the first outcome.

I P2
j = P(λj > p2

o) for the second outcome.

wj =

(
P1

j P2
j

)c(n)

∑k
i=1

(
P1

i P2
i
)c(n)

I Hybrid approach: compare one outcome between treatments, the
other to hypothesized value.

wj =
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2-Arm Trials
3-Arm Trials
Dependent Objectives

I Each special case is repeated r = 1, 000 times.
I Trials consist of n = 200 simulated subjects.
I Lead-in of first 10 subjects.
I Thereafter, weights are allowed to adapt.

I Calculation of posterior probabilities (for simplicity):
I Informative and skeptical beta priors on efficacy/toxicity rates.
I Binomial likelihood for efficacy/toxicity frequencies.
I Conjugate pair yields beta posteriors.

I These choices allow.
I Comparisons to hypothesized values: probabilities obtained

directly.
I Inter-treatment comparisons: MCMC (or integration) methods

used.
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2-Arm Trials
3-Arm Trials
Dependent Objectives

Simulation Results from 2-Arm Study.
I Efficacy compared to hypothesized value (30%).
I Toxicity compared to hypothesized value (10%).

(a) pe
1 = pe

2 = 0.3; pt
1 = pt

2 = 0.1 (b) pe
1 = 0.5, pe

2 = 0.3; pt
1 = pt

2 = 0.1
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2-Arm Trials
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Dependent Objectives

Simulation Results from 2-Arm Study.
I Efficacy compared to hypothesized value (30%).
I Toxicity compared to hypothesized value (10%).

(c) pe
1 = pe

2 = 0.3; pt
1 = 0.25, pt

2 = 0.1 (d) pe
1 = 0.5, pe

2 = 0.3; pt
1 = 0.2, pt

2 = 0.1
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2-Arm Trials
3-Arm Trials
Dependent Objectives

Simulation Results from 2-Arm Study.
I Average Sample Size.
I Comparisons made to Hypothesized Values (pe

o = 0.3, pt
o = 0.1).

Sample Standard Sample Standard
Parameters Size Deviation Parameters Size Deviation
pe

1 = 0.3 pe
1 = 0.3

pe
2 = 0.3 n̂1 = 101.0 SD = 22.6 pe

2 = 0.3 n̂1 = 52.2 SD = 16.9
pt

1 = 0.1 n̂2 = 99.0 SD = 22.6 pt
1 = 0.25 n̂2 = 147.8 SD = 16.9

pt
2 = 0.1 pt

2 = 0.1

pe
1 = 0.5 pe

1 = 0.5
pe

2 = 0.3 n̂1 = 111.6 SD = 19.9 pe
2 = 0.3 n̂1 = 71.2 SD = 21.4

pt
1 = 0.1 n̂2 = 88.4 SD = 19.9 pt

1 = 0.2 n̂2 = 128.8 SD = 21.4
pt

2 = 0.1 pt
2 = 0.1
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Simulation Results from 2-Arm Study.
I Percentage of Larger Samples and Decisions in Favor.
I Comparisons made to Hypothesized Values (pe

o = 0.3, pt
o = 0.1).

I Case 1: pe
1 = pe

2 = 0.3, pt
1 = pt

2 = 0.1.
I Case 2: pe

1 = 0.5, pe
2 = 0.3, pt

1 = pt
2 = 0.1.

I Case 3: pe
1 = pe

2 = 0.3, pt
1 = 0.25, pt

2 = 0.1.
I Case 4: pe

1 = 0.5, pe
2 = 0.3, pt

1 = 0.2, pt
2 = 0.1.

Reject in Favor of % of Samples
Arm 1 Eff. Arm 2 Eff. Arm 1 Tox. Arm 2 Tox. n1 > n2 n2 > n1

Case 1 (Adapt) 3.3% 3.4% 2.7% 2.4% 50.6% 49.4%
Case 1 (Equal) 3.3% 2.1% 2.6% 2.5% – –

Case 2 (Adapt) 83.1% 0.0% 3.4% 3.7% 72.9% 27.1%
Case 2 (Equal) 83.6% 0.0% 2.2% 2.4% – –

Case 3 (Adapt) 2.5% 1.9% 80.5% 0.0% 1.3% 98.7%
Case 3 (Equal) 2.0% 2.7% 81.2% 0.0% – –

Case 4 (Adapt) 77.0% 0.0% 54.1% 0.1% 8.9% 91.1%
Case 4 (Equal) 81.4% 0.0% 51.4% 0.0% – –
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Simulation Results from 3-Arm Study.
I Efficacy compared between treatments.
I Toxicity compared to hypothesized value (10%).

(e) pe
j = 0.3, pt

j = 0.1, j = 1, 2, 3 (f) pe
1 = 0.5, pe

2 = pe
3 = 0.3; pt

j = 0.1
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Simulation Results from 3-Arm Study.
I Efficacy compared between treatments.
I Toxicity compared to hypothesized value (10%).

(g) pe
j = 0.3; pt

1 = 0.25, pt
2 = pt

3 = 0.1 (h) pe
1 = 0.4, pe

2 = 0.3, pe
3 = 0.2; pt

j = 0.1
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Simulation Results from 3-Arm Study.
I Average Sample Size.
I Efficacy Compared between Treatments.
I Toxicity compared to hypothesized values (pt

o = 0.1).

Sample Sample
Parameters Size Parameters Size
pe

1 = 0.3 pe
1 = 0.3

pe
2 = 0.3 n̂1 = 66.0, SD = 23.1 pe

2 = 0.3 n̂1 = 37.2, SD = 14.7
pe

3 = 0.3 n̂2 = 66.2, SD = 23.0 pe
3 = 0.3 n̂2 = 81.2, SD = 25.7

pt
1 = 0.1 n̂3 = 67.8, SD = 22.5 pt

1 = 0.25 n̂3 = 81.6, SD = 26.4
pt

2 = 0.1 pt
2 = 0.1

pt
3 = 0.1 pt

3 = 0.1

pe
1 = 0.5 pe

1 = 0.4
pe

2 = 0.3 n̂1 = 113.0, SD = 21.9 pe
2 = 0.3 n̂1 = 101.0, SD = 23.4

pe
3 = 0.3 n̂2 = 42.9, SD = 17.1 pe

3 = 0.2 n̂2 = 61.0, SD = 21.8
pt

1 = 0.1 n̂3 = 44.1, SD = 17.3 pt
1 = 0.1 n̂3 = 38.0, SD = 15.0

pt
2 = 0.1 pt

2 = 0.1
pt

3 = 0.1 pt
3 = 0.1
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Simulation Results from 3-Arm Study.
I Percentage of Larger Samples and Decisions in Favor.
I Efficacy Compared between Treatments.
I Toxicity compared to hypothesized values (pt

o = 0.1).
I Case 1: pe

j = 0.3, pt
j = 0.1, j = 1, 2, 3. Case 2: pe

1 = 0.5, pe
2 = pe

3 = 0.3, pt
j = 0.1, j = 1, 2, 3.

I Case 3: pe
j = 0.3, j = 1, 2, 3, pt

1 = 0.25, pt
2 = pt

3 = 0.1. Case 4: pe
1 = 0.4, pe

2 = 0.3, pe
3 = 0.2, pt

j = 0.1.

Treatment Reject in Favor of % of Reject in Favor of % of
Comparison (Adapt) (Equal) Samples (Adapt) (Equal) Samples

Case 1 Case 3
Eff: 1v2 6.8% 4.7% n1 > n2, n3 8.9% 5.1% n1 > n2, n3
Eff: 1v3 6.1% 5.1% 31.2% 9.3% 4.5% 1.5%
Eff: 2v3 6.6% 5.4% n2 > n1, n3 5.3% 6.3% n2 > n1, n3
Tox: 1v2 7.1% 4.4% 33.9% 75.3% 78.0% 48.7%
Tox: 1v3 7.2% 5.4% n3 > n1, n2 75.2% 74.3% n3 > n1, n2
Tox: 2v3 7.3% 6.4% 33.8% 4.9% 4.8% 48.8%

Case 2 Case 4
Eff 1v2 77.3% 77.8% n1 > n2, n3 32.7% 32.4% n1 > n2, n3
Eff 1v3 75.4% 78.2% 93.2% 74.7% 82.0% 79.7%
Eff 2v3 11.6% 6.3% n2 > n1, n3 36.7% 40.2% n2 > n1, n3
Tox: 1v2 4.3% 5.8% 3.2% 6.0% 6.2% 17.7%
Tox: 1v3 4.4% 6.2% n3 > n1, n2 7.5% 6.7% n3 > n1, n2
Tox: 2v3 11.6% 5.6% 3.3% 12.0% 5.1% 1.9%
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I This method assumes objectives are Independent.
I What if dual objectives are Dependent?

I Motivating Example: Futility is conditional on Efficacy.
I Is adaptive allocation method affected?

I Simulation Study:
I Assume pe

1 = 0.5 and pt
1 = 0.1 in treatment 1, and pe

2 = 0.3 and
pt

2 = 0.1 in treatment 2.
I Comparisons made to Hypothesized Values for Efficacy

(pe
o = 0.3) and Toxicity (pt

o = 0.1).
I Frechet bounds (Chaganty and Joe, 2006): use correlations
−0.2, 0.0, 0.2 or 0.4.

I As correlation moves away from 0:
I Slight move toward equal allocation.
I SDs of weights decrease slightly.
I Power relatively unaffected.
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Simulation Results from 3-Arm Study.
I Average Sample Size (with Standard Deviation) and Decisions in

Favor.
I Comparisons made to Hypothesized Values for Efficacy and

Toxicity.

Sample Reject in Favor of Sample Reject in Favor of
Size SD Efficacy Toxicity Size SD Efficacy Toxicity

ρ = −0.2 ρ = 0.0

Arm 1 110.5 19.3 83.0% 3.2% 111.6 19.8 83.6% 3.3%
Arm 2 89.5 19.3 0.0% 3.0% 88.4 19.8 0.0% 3.9%

ρ = 0.2 ρ = 0.4

Arm 1 111.0 19.4 82.5% 4.2% 107.9 18.7 81.1% 5.5%
Arm 2 89.0 19.4 0.0% 3.4% 92.1 18.7 0.0% 2.4%
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I Retrospective analysis of stem cell transplant patients treated at
VCU Medical Center (2003− 2010).

I Mobilization groups: Plerixafor (AMD), Plerixafor early intervention (PEI), chemotherapy (Chemo) and

granulocyte-colony stimulating factor (GCSF).

I Outcome Definitions:
I Efficacy: patients produce≥ 5 × 106/kg total CD34+ cells.

I Futility: ≥ 5 days are needed for mobilization.

I Efficacy and futility measurements available in 373 patients:
I AMD: n = 19, p̂e = 0.53, p̂f = 0.05

I PEI: n = 36, p̂e = 0.47, p̂f = 0.11

I Chemo: n = 96, p̂e = 0.78, p̂f = 0.10

I GCSF: n = 222, p̂e = 0.64, p̂f = 0.33

I Patient data used as if it were prospectively planned clinical trial.

I Patients accrued in chronological order.

I Patient outcomes available in order of mobilization (takes only a few days).
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Patterns of adaptive weights for four treatment groups.
I Efficacy compared between treatments.
I Futility compared to hypothesized value (10%).

(i) 4-Group Study
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I Adaptive Randomization/Allocation:
I Can allocate more patients to superior treatment...
I ... and fewer to inferior treatment.

I Specifically, Bayesian Adaptive Randomization:
I Relatively simple to implement.
I Can be designed to have optimal frequentist characteristics (e.g.

desirable type I and type II error rates).
I Relatively unaffected by dependent outcomes.

I Note: not all randomized trials should use adaptive allocation.
I Outcomes not quickly observed (Simon 1977; Berry and Eick

1995).
I Controlling for covariates can be problematic (Simon 1977).
I Multi-center trials (Berry and Eick 1995).
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I We used c(n) = n/2N in our allocation algorithm (Thall and
Wathen, 2007).

I c(n) = 0 at beginning of trial: balanced allocation.
I c(n) → 1/2 toward end of trial (Optimal Allocation

(Rosenberger et al., 2001)).
I Automatic “lead-in” at beginning of trial.
I Keeps allocation weights from changing too quickly.

I We also considered a decreasingly informative prior (DIP)
method.

I Skeptical prior: decreasing function of sample size π(θ0, N − n).
I Early trial: close to balanced allocation.
I As trial progresses: actual evidence outweighs prior skepticism.

I DIP method Behaves similarly to Thall and Wathen (2007)
method.

I Performance can be affected by poor choice of skepticism.
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I We used posterior probabilities in our allocation algorithm
(Thompson, 1933; Thall and Wathen, 2007).

I Increases likelihood patients allocated to superior treatment.
I Benefits (Berry, 2010) and shortcomings (Korn and Freidlin,

2011).
I We could have used predictive probabilities.

I Account for uncertainty due to unobserved data.
I Slower adaptation in early portions of trial.
I Has better power and error rates than posterior probabilities.
I Allocates slightly fewer patients into superior treatments.
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Thank You

Questions?


